Universalities in ultracold reactions of alkali-metal polar molecules
نویسندگان
چکیده
We consider ultracold collisions of ground-state heteronuclear alkali-metal dimers that are susceptible to four-center chemical reactions 2AB → A2 + B2 even at submicrokelvin temperatures. These reactions depend strongly on species, temperature, electric field, and confinement in an optical lattice. We calculate ab initio van der Waals coefficients for these interactions and use a quantum formalism to study the scattering properties of such molecules under an external electric field and optical lattice. We also apply a quantum threshold model to explore the dependence of reaction rates on the various parameters. We find that, among the heteronuclear alkali-metal fermionic species, LiNa is the least reactive, whereas LiCs is the most reactive. For the bosonic species, LiK is the most reactive in zero field, but all species considered, LiNa, LiK, LiRb, LiCs, and KRb, share a universal reaction rate once a sufficiently high electric field is applied. For indistinguishable bosons, the inelastic/reactive rate increases as d2 in the quantum regime, where d is the dipole moment induced by the electric field. This is a weaker power-law dependence than for indistinguishable fermions, for which the rate behaves as d6.
منابع مشابه
Experimental Studies of LiRb: Spectroscopy and Ultracold Molecule Formation by Photoassociation
Dutta, Sourav Ph.D., Purdue University, December 2013. Experimental Studies of LiRb: Spectroscopy and Ultracold Molecule Formation by Photoassociation. Major Professor: Yong P. Chen. Heteronuclear polar molecules have recently attracted enormous attention owing to their ground state having a large electric dipole moment. The long range anisotropic dipole-dipole interaction in such systems is th...
متن کاملMolecule formation in ultracold atomic gases
This review describes recent experimental and theoretical advances in forming molecules in ultracold gases of trapped alkali metal atoms, both by magnetic tuning through Feshbach resonances and by photoassociation. Molecular Bose-Einstein condensation of long-range states of both boson dimers and fermion dimers was achieved in 2002-3. Condensates of boson dimers were found to be short-lived, bu...
متن کاملScattering of ultracold molecules in the highly resonant regime
Compared to purely atomic collisions, ultracold molecular collisions potentially support a much larger number of Fano-Feshbach resonances due to the enormous number of rovibrational states available. In fact, for alkali-metal dimers we find that the resulting density of resonances cannot be resolved at all, even on the sub-μK temperature scale of ultracold experiments. As a result, all observab...
متن کاملUniversal ultracold collision rates for polar molecules of two alkali-metal atoms.
Universal collision rate constants are calculated for ultracold collisions of two like bosonic or fermionic heteronuclear alkali-metal dimers involving the species Li, Na, K, Rb, or Cs. Universal collisions are those for which the short range probability of a reactive or quenching collision is unity such that a collision removes a pair of molecules from the sample. In this case, the collision r...
متن کاملElectron electric-dipole-moment searches based on alkali-metal- or alkaline-earth-metal-bearing molecules
We introduce four new molecules—YbRb, YbCs, YbSr+, and YbBa+—that may prove fruitful in experimental searches for the electric-dipole moment EDM of the electron. These molecules can, in principle, be prepared at extremely low temperatures by photoassociating ultracold atoms and therefore may present an advantage over molecular-beam experiments. Here we discuss properties of these molecules and ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2011